ラモスさんのツイートでの解説より
BA.5の特性と同じくらい重要なのは↓この指摘かも
BA.5の免疫回避はL452RとF486Vによるもの。https://t.co/exn1zkI8Os
— ramos2 (@ramos262740691) July 5, 2022
んで、ACE2親和性は高くなっている。この結果からは、武漢株の3倍、BA.1の3倍。
ハムスターで病原性Upの実験結果もあるので、ここらへんから現在病原性アップが疑われている。
(しかしまだ論文少ないなBA.4/5) pic.twitter.com/0QP4w8Xt2P— ramos2 (@ramos262740691) July 5, 2022
免疫回避については本当にすごい。
右上がPfizer3回接種後最強タイミングの血漿だけど、BA.1の3倍避ける。
3回接種してもBA.1感染防御能は低かったので、それより更に3倍回避とは無理ゲー。乙。右下はBA.1感染者血漿だけど、それさえ2倍回避する。同じオミクロンじゃなくね?もう。 pic.twitter.com/dDoZ8fQJP7
— ramos2 (@ramos262740691) July 5, 2022
BA.4/5はん、対オミクロン抗体すっげぇ避けるやん…
お前それでも一応オミクロンって定義なんか?…
白くまくんと思って食べたらスイカバー的な裏切り感やん… pic.twitter.com/ZmVnuUZVyF— ramos2 (@ramos262740691) July 5, 2022
で、病原性はどうなのよ?というと、南アフリカからの報告では重篤以上(死亡含む)率はBA.1と比較して1.12倍程度(vsδは1.44倍)。
なので、現時点では「めっちゃ強い」という可能性は低くなって一安心ではある。ただ、まだ南アフリカの解析結果です。https://t.co/G008nEom2u
— ramos2 (@ramos262740691) July 5, 2022
3回接種した人の重篤以上(死亡含む)予防率は83%
既感染者のそれは71%ぶっちゃけ40歳以上の重篤以上率が20代30代の2倍、3倍、6倍、10倍と増えるし、肥満なだけでも2倍になるので
δとοの病原性の差とか、BA.5の病原性がどうかとか全部誤差です。自分の所属カテゴリを把握することの方がよっぽど大事 pic.twitter.com/7xhGYMOWt0
— ramos2 (@ramos262740691) July 5, 2022
そして、個人的に気にしているのは感染しやすい年代。
この論文では分からないけど、BA.1になったときは子供に途端に感染するようになった。「オミクロンは弱毒!!」と入院率を見て言っていた人々は、僕からすれば、検体採取率と試験感度を混同していた初期の日本の間違え医師に近い。
— ramos2 (@ramos262740691) July 5, 2022
入院率が低くなったのは別にオミクロンBA.1が重症化しにくい子供に感染しやすくなったことによる母数の薄まりでしかないのだ。
ウイルス自体の毒性はさっきの図でも、たかがδ比1.44倍程度の強弱の変化です。なので、BA.5が子供嗜好を失い始めると目算を誤る可能性がある。それは高齢者の多い先進国は
— ramos2 (@ramos262740691) July 5, 2022
常に考えておくべき。
で、結論からいうと、7/1に英国統計局が出した結果を見る限り、明瞭な大きな不安はなし。
ただ、まだBA.2と混ざりのデータだし、少し不安がある(50,60代増えてるのがBA.4/5の性質だったらキツい)。 pic.twitter.com/DOdCY4p8x7— ramos2 (@ramos262740691) July 5, 2022
そして、5月中旬頃から始まったインドがピークを迎えた様に思う(少し気が早い?)
インドが1ヶ月半でおよそ7倍。
なので日本にそのまま外挿しちゃうと、8月上〜中旬に800ppm=東京都11170人がピーク(実態はこの10倍くらい)。
ま、外挿していいか知らんけど、とりあえず新年の波の半分くらい pic.twitter.com/IamVXei1j4— ramos2 (@ramos262740691) July 5, 2022
見込むとして、医療崩壊必須なので、今から対策しましょう。
— ramos2 (@ramos262740691) July 5, 2022
次に参考になるのはポルトガルか英国あたりから出てくるデータかな。
でも、日本も英国に負けずBA.4/5感染追ってるので先が見えないまま突入かな pic.twitter.com/7xUBEF5vhn
— ramos2 (@ramos262740691) July 5, 2022
んーなんか危機感ないなって人に分かりやすく言おう。
δが来る!と思ってください。
大丈夫それより悪いのが来ます。
— ramos2 (@ramos262740691) July 5, 2022
現段階のまとめ
BA.5の毒性は?
BA.1(年始のオミクロン)の死亡・重篤率を1として
δが1.44倍、
BA.5が1.12倍
(南アフリカのデータ一報のみに留意)
ο言うほど弱くないよ若いか若くないか(3-10倍)、肥満かそうでないか(2倍)の方がよっぽどリスクだからそっち気にして、自分のリスクを考慮した選択を。
— ramos2 (@ramos262740691) July 5, 2022
◆Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum
【ScienceDirect 2022年6月9日】
Summary
The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa’s Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.
◆Outcomes of laboratory-confirmed SARS-CoV-2 infection during resurgence driven by Omicron lineages BA.4 and BA.5 compared with previous waves in the Western Cape Province, South Africa
【medRxiv 2022年7月1日】
Abstract
Objective We aimed to compare clinical severity of Omicron BA.4/BA.5 infection with BA.1 and earlier variant infections among laboratory-confirmed SARS-CoV-2 cases in the Western Cape, South Africa, using timing of infection to infer the lineage/variant causing infection.
Methods We included public sector patients aged ≥20 years with laboratory-confirmed COVID-19 between 1-21 May 2022 (BA.4/BA.5 wave) and equivalent prior wave periods. We compared the risk between waves of (i) death and (ii) severe hospitalization/death (all within 21 days of diagnosis) using Cox regression adjusted for demographics, comorbidities, admission pressure, vaccination and prior infection.
Results Among 3,793 patients from the BA.4/BA.5 wave and 190,836 patients from previous waves the risk of severe hospitalization/death was similar in the BA.4/BA.5 and BA.1 waves (adjusted hazard ratio [aHR] 1.12; 95% confidence interval [CI] 0.93; 1.34). Both Omicron waves had lower risk of severe outcomes than previous waves. Prior infection (aHR 0.29, 95% CI 0.24; 0.36) and vaccination (aHR 0.17; 95% CI 0.07; 0.40 for boosted vs. no vaccine) were protective.
Conclusion Disease severity was similar amongst diagnosed COVID-19 cases in the BA.4/BA.5 and BA.1 periods in the context of growing immunity against SARS-CoV-2 due to prior infection and vaccination, both of which were strongly protective.
半分の波では済まないかも?https://t.co/v8NNqDg0nH
— ramos2 (@ramos262740691) July 6, 2022
実はつい先日、他国データ見て、ま、オミクロンBA.1の半分くらいの波かなとざっくり感想述べていました。
NYTも過去2番目の波だろうと。https://t.co/MkakacibJrでも。
昨夜、熊本県データとか見てから、なんか楽観的過ぎたかなと思っています。
日本だけ年末年始以上の波になる可能性はないのか?— ramos2 (@ramos262740691) July 6, 2022
左、今
右、年末年始日本以外の国を見ます。
ポルトガルは早かったので切り方が良くなかったけど、イタリア、ベルギー、今の方が増え方は早い。ポルトガルもおそらく微妙に早い。年末年始のこの3カ国が検査飽和で捉えられてなかっただけなら、いいのですが。 pic.twitter.com/TsVDt8sSsW
— ramos2 (@ramos262740691) July 6, 2022
そうではない場合、年始に劇的にBA.1に負けた日本では、「更に負ける」というストーリーも成り立つよねと。
入院者数も若干早い〜同じあたり?それを日本が今のベースラインから始めてしまうと、年始以上に酷いことになる訳です。まず捉えられない
先日は他国の山を見て、半分くらいと思ったですが pic.twitter.com/EPG42Q5h30
— ramos2 (@ramos262740691) July 6, 2022
そもそも日本はBA.1前は超綺麗だったところから今に至るのですし、
他国での早さがBA.1より早い→年始に一番早かった日本、より早くなるの?と増加速度で見てみると懸念しか出てこなかった今日の昼休みです。— ramos2 (@ramos262740691) July 6, 2022
ま、あくまで有り得るストーリーの1つとして。
そして色々と調べる前に日本の現実データの方が先に出そう…
— ramos2 (@ramos262740691) July 6, 2022
◆As BA.5 becomes dominant among new U.S. cases, reduced state reporting is blurring the real-time look at the virus.
【New York Times:Adeel Hassan and Sarah Cahalan 2022年7月5日】
At a glance, the pandemic picture in the United States may seem remarkably stable. The average number of new confirmed coronavirus cases per day has hardly budged for weeks, hovering between 95,000 and 115,000 a day each day in June.
A closer look shows that as public testing sites run by state and local governments have winnowed, more states have also stopped giving daily data updates, creating a foggier look at the state of virus across the country.
That comes as new federal estimates on Tuesday showed that the rapidly spreading Omicron subvariant known as BA.5 has become dominant among new coronavirus cases. As of the week ending Saturday, BA.5 made up about 54 percent of new cases in the United States, according to the Centers for Disease Control and Prevention. Just a week ago, the agency’s estimates had put BA.5 and BA.4, another Omicron subvariant, together as dominant, a trend experts had predicted. The new statistics, released Tuesday morning, are based on modeling and can be revised as more data comes in.
BA.4 and BA.5 are able to evade some of the antibodies produced after coronavirus vaccinations and infections, including infections caused by some other versions of Omicron. But researchers in South Africa recently reported that a spring surge driven by BA.4 and BA.5 did not appear to cause significantly more severe disease than the nation’s first Omicron wave.
The reduction in U.S. public testing means that lab-based P.C.R. testing capacity in July will be only half of what it was in March, according to a recent estimate by Health Catalysts Group, a research and consulting firm. Even a few testing companies announced layoffs and closures last week.
The vast majority of the positive results from popular home test kits are not included in official data, and not everyone who gets infected knows or gets tested. Many Americans appear to be moving even further away from focusing on daily case counting — which, to be sure, have always been an undercount of total infections — as a measure of the nation’s pandemic health. But other Americans with risk factors have said that they feel ignored and abandoned as their governments and neighbors have sought a return to normal.
And some scientists estimate that the current wave of cases is the second largest of the pandemic.
“One of my favorite lines from somebody at the C.D.C. was ‘You don’t need to count the raindrops to know how hard it’s raining,’” Dr. Rochelle Walensky, the director of the Centers for Disease Control and Prevention, said in late June at a conference in Aspen, Colo. “So we can tell by the half a million to a million P.C.R.s we’re doing every day how we’re doing in areas around the country.”
The C.D.C.’s monitoring of community risk levels shows that in its latest update, 33 percent of the American population lived in a high-risk county, in most regions outside the Northeast. In May, the map had been flipped, with the Northeast comprising most of the high-risk counties. The C.D.C. recommends wearing a mask indoors in public under such a designation.
In most of the Northeast, cases have decreased continuously throughout June, according to a New York Times database. In the South, many states have seen cases double or triple over the same time. As of Sunday, more than 113,000 new coronavirus cases are being reported each day in the United States.
“That’s not really a reflection of the total amount of virus circulating in the communities,” said Amesh Adalja, a senior scholar at the Johns Hopkins Center for Health Security at the Bloomberg School of Public Health. He said that his “back of the envelope” estimate was about one million cases per day.
As states report less frequently, changes in the trajectory of the virus are slower to reveal themselves. Nearly every state reported the number of new coronavirus cases, hospitalizations and deaths for five days a week or more in 2020 and 2021, but 23 states now release new data only once a week, according to Times tracking.
California, which once updated its cumulative case and death figures every weekday, now does so only twice weekly. In Florida, case and death data are released just once every two weeks. Just last week, many more public testing sites closed in Alaska, Colorado and Rhode Island.
Recent virus figures have hiccuped around holidays like Memorial Day and Juneteenth, during which many states often pause reporting and then restart tracking afterward, a trend that is sure to continue this week, after the Fourth of July holiday weekend.
“Following the daily test count is less instructive than it was,” Dr. Adalja said, citing the close link between cases and hospitalizations in the past. Today’s numbers should not be treated like checking a sports team’s daily standings or scores, he added.
“I think testing is taking a different role,” he said. “Even when testing was at a different point, it has always been an underestimate.”
To get a localized look at how the virus is faring, Dr. Adalja said that he has come to rely on hospitalizations as a percentage of its capacity. He also checks the C.D.C.’s community levels tracker, which includes new hospital admissions and how many beds are used. He urges a shifting focus to severe disease, rather than tracking the “booms and busts of cases.”
Hospitalizations have increased modestly throughout June, though they remain low. Just over 33,000 people are in American hospitals with the coronavirus on an average day, and fewer than 4,000 are in intensive care. Reports of new deaths remain below 400 a day, down from the country’s daily death toll peak of more than 3,300 deaths in January 2021.
恥ずかちー話、予測をソッコー外したのでとりま、やり直しました。
・7月15-30日の間に東京都新規5-10万人になってそこが上限。
(実態が3-8%/dayになったら、もう累積感染者は殆ど全員じゃね?という話)https://t.co/0XGUWT4Vqk— ramos2 (@ramos262740691) July 7, 2022
完全に予想を外しました。
昨日、東京都が8000人だった時点で一昨日の僕の予測ピーク東京都一万人が間違えなのは明らかです。https://t.co/rxR9FrzMkk— ramos2 (@ramos262740691) July 7, 2022
なぜ間違えたのか?
理由はこれです。世界で日本だけ、初期オミクロンのBA.1にぶっちぎりで負けている。
ファクターXが消えたというところでしょうか正直オミクロン以前の世界では、先行した他国状況見ながら「ざっくりこんくらいかなぁ」と予測しても大まかな雰囲気は外しませんでした。 pic.twitter.com/9JEOJLCRYe
— ramos2 (@ramos262740691) July 7, 2022
見てみましょう
先行したと思われる国
India 7倍(BA.1の半分の波)、加速度はBA.1の時の半分くらい
Portgul 2.5倍(検査飽和?BA.1の1/4の波)、加速度はBA.1の時の半分くらいこっからとりあえずインド単純外挿したら8月中旬、東京11170がピーク。これはもう現実に否定された。 pic.twitter.com/0Tg17TAxJi
— ramos2 (@ramos262740691) July 7, 2022
ではもう少し見よう
日本よりちょっと先に動いている国
ベルギー 既に5倍(BA.1の半分に既に到達)、加速度がBA.1の時と同じ
イタリア 既に6倍(BA.1の半分以上に既に到達)、加速度はBA.1の8割くらいどうも最近流行りだした国の雲行きが怪しい。そして加速度は国ごとに固有(コロナ対策の差) pic.twitter.com/wr7Jye93Ba
— ramos2 (@ramos262740691) July 7, 2022
コロナ対策の差など昔からあったけど、オミクロンでそれが良く見えるようになったというのが正確かな
なので、日本に他国チャートを単純外挿してはダメだ。
日本:世界で一番オミクロンに負けている国(BA.1の時の加速度が世界一)。
これを考慮して、日本のBA.1実績から予測しないといけない。 pic.twitter.com/HqBGCRgPCa— ramos2 (@ramos262740691) July 7, 2022
とりあえずそんな現実はみたくないので、まだシンプル予測をしてみる。
・加速度このまま、期間は他国参照:8月頭、1200ppm=0.12%(実態は1.2%)、東京都1.7万人/日がピーク
さて、ちゃんとやろう。
・BA.1の時の加速度の9割、日本:8月中旬:77000ppm=7.7%(実態は77%)
— ramos2 (@ramos262740691) July 7, 2022
とはならない。この前にもう全員感染してる。
それに実態がある閾値を超えたあたりでは「感染源の周囲には感染済み免疫の人ばかり」という状況が頻発し増加は鈍化するのではと。なので・BA.1の加速度の9割、日本:7月16日:2936ppm=0.3%(実態は3%):東京都新規4.2万人/日がピーク
— ramos2 (@ramos262740691) July 7, 2022
ピークというか上限。
「集団免疫はざっくり6割」という伝統的伝染病学神話が正しいとする。
コロナは不均一性が特徴。感染者のうち、社会的感染源になるのは一部。なので神話が計算上20%に下がる。(これがスーパースプレッダーが増えたδ以降にも効けばいいが…)https://t.co/2qqWK2OUPZ
— ramos2 (@ramos262740691) July 7, 2022
累積20%感染すれば終わるので、ここから先は暗算無理ゲー
Excelでちゃちゃっとやる。前提
・指数増幅速度(Logグラフの傾き)がBA.1の9割で衰えない
・集団免疫20%で唐突に終
・全部BA.57/15、新規2576ppm時点で達成する。
集団免疫やっぱ60%として
7/24、新規8400ppm、東京都新規11万人で達成— ramos2 (@ramos262740691) July 7, 2022
なので実際は上限に近づけば勢いが衰えてだらだら続くとしても、東京都が全国に先行するから東京都だけ先に進んでしまうとしても、
7月末までに、東京都新規4万人ー11万人/日あたりの上限を達成してしまうのでは。とりあえず、雲行きが完全に怪しいです。
— ramos2 (@ramos262740691) July 7, 2022
◆Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics【medRxiv 2021年8月1日】
Introduction
Selection acting on unmeasured individual variation is a well-known source of bias in the analysis of populations. It has been shown to affect measured rates of mortality (Keyfitz and Littman; Vaupel et al 1979; Vaupel and Yashin 1985), the survival of endangered species (Kendall and Fox 2002; Jenouvrier et al 2018), the scope of neutral theories of biodiversity and molecular evolution (Steiner and Tuljapurkar 2012, Gomes et al 2019), the risk of diseases whether non-communicable (Aalen et al 2015; Stensrud and Valberg 2017) or infections (Anderson et al 1986; Dwyer et al 1997; Smith et al 2005; Bellan et al 2015; Gomes et al 2019; Corder et al 2020), and the efficacy of interventions such as vaccines (Halloran et al 1996; O’Hagan et al; Gomes et al 2014; Gomes et al 2016; Langwig et al 2017) or symbionts (Pessoa et al 2016; King et al 2018). Building on this knowledge, we addressed how selection on individual variation might affect the course of the coronavirus disease (COVID-19) pandemic (Gomes et al 2020).
COVID-19 is an infectious respiratory disease caused by a virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]), which was first identified in China in late 2019 and has since spread worldwide leading to considerable human suffering and social disruption. European and American continents have been the most affected, with 0.16% and 0.20% of the respective total populations having died as of the 15 July 2021 (WHO 2021). Here we analyse series of daily deaths attributed to COVID-19 in Spain and Portugal (Iberian Peninsula) to study how individual variation in susceptibility and exposure to a respiratory virus affects its epidemic trajectory. Besides adding to the compendium of neglected effects of selection in population dynamics we hope to stimulate a new approach to study epidemic dynamics.
The main idea developed here is that individual variation in susceptibility or exposure (connectivity) accelerates the acquisition of immunity in populations. More susceptible and more connected individuals have a higher propensity to be infected and thus are likely to become immune earlier. Due to this selective immunization by natural infection, heterogeneous populations acquire herd immunity by natural infection more efficiently than suggested by models that do not fully account for these types of variation. We integrate continuous distributions of susceptibility or connectivity in otherwise basic epidemiological models for COVID-19, which necessarily account for non-pharmaceutical intervention effects, and generate three types of results. First, at national levels the herd immunity threshold by natural infection declines from around 70% to 20-30%. This is newly reported here for Spain and in agreement with recent estimates for England and Scotland (Gomes et al 2021). Second, these inferences can be made relatively early in the pandemic, such as between first and second waves, provided the first wave is sufficiently large and spatially synchronous. Third, we include a selection of results for Portugal to illustrate how the inferential procedure degenerates when national data do not meet certain conditions.