SARS-CoV-2 と COVID-19 に関するメモ・備忘録
「マスクをしたら、感染防御をしたら免疫力が下がる」
ではなくて、
「COVID-19既感染で免疫機構が破壊されている/能力が落ちている」
のではないか?
前者は単に憶測や教条、仮説の域を脱しておらず、いままで証拠が示されたことはない。
後者は、すでに厖大な知見が報告されている。
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 7, 2023
新型コロナウイルスは300個あれば感染成立する、という前提でクレアさんのシミュレーターを見ています。(店長さんありがとうございます) 私がいるワンルームな自室の広さ(8畳プラス高さがそこそこある)に対して「10分でエアロゾルを90%カットしな!!」と狂ったような風量での検証。 pic.twitter.com/Io2aPYHdl6
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
一時間に20回換気とか感染症病棟かここ?という数値を入れた場合の必要換気量(空気清浄機による空気供給量)の1.5倍をキメちゃってます。 しかし…… pic.twitter.com/a57OHNbRAB
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
一人の新型コロナ感染者がいる場合、また呼気に排出されるウイルス量が多い場合ではこんな感じで残留粒子が残ってしまいます。 ウイルス量が300あれば感染成立するなら、マスクせずに一人感染者がいて過ごしている場合は2時間半で感染成立個数を満たしてしまいます。 理詰めしていくとこう。 pic.twitter.com/DElrd6ObxE
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
んで……プリーツ型マスクで漏れが30%程度あっても、7割のウイルス量をカットできるのだから…… 二人で過ごしていてもマスクしていれば感染者がいても8時間程度は耐えられる計算になりますね。 凄いぞユニバーサルマスキング、空気清浄と組み合わせてスイスチーズモデルだ、ってなるわけです。
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
計算したら一時間に28回換気してる計算じゃないですかこれ……ただ、学校や仕事場とか一日何時間いますかの計算なわけです。 8時間居るとするなら、これくらい換気(空気清浄)キメちゃっても損はないのでは。 でもこれ、感染者一人の場合の計算なのでまだ甘い。
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
しっかし、計算すればするほど、マスクしてない馬鹿者がいると秒で感染成立するんだが……無症状だからマスクしてない?舐めてる?他の医療者ならまだしも私の前でそれやるってことは命なくていいってことだよね? 全員マスクしていればプリーツ型でも呼気3割カットで更に吸うときもそう。
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
ちょっとここで「N95をつけていて感染した」という事例も検証。 ユーザーシールチェックと定性フィットテストをして問題ないことを前提にします。 今回は端的に95%カットとします。 感染成立に必要なウイルス個数は60000必要になる計算ですね。
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
ウイルス排出が多い患者では一時間に54000個ものウイルスが空気中に出るわけです、エアロゾルとしてです。 換気してなかったら一時間ちょっとで感染成立するって意味ですこれ。 なので車内とかで換気せずにノーマスクがいたらN95マスクレベルでも一時間以上いるのは危険という計算になりますね。
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
と……自衛のためにここで必要になるのがモバイル化したコルジ・ローゼンタールボックスなんです。 マスクした口元にどれだけ綺麗な空気が届くか、それによって汚染環境で耐えられる時間が決まってきます。 高濃度のウイルスを排出するノーマスクの感染者が一人いる場合を前提として……
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
粒子量を半減できれば先の空間では2時間居られるわけです。 っつーかマスクしないで公共の場とか車の中とか列車に乗ってる人間は本気で頭どうかしてます、ってなるんですよ計算すればするほど「お前らが頭緩いせいでこっちが危険なんだよ!!!」と。 なので私は換気をきっちり計算してます。
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
「お前がマスクしないで、なんでこっちがわざわざN95マスクつけてやってんだ?舐めてんのか?」というのも出てきますね!!!! ウイルス感染成立個数が300個しかない、ってのは本当に大変なんですよ。 逆に言えばマスクつけてたら他の飛沫・空気感染する病原体はシャットアウトできるのは条理。
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
舐めたことを言っていたヒゲカンセンショウセンモンカか公共交通機関でマスク着用しなくていいのでは、なんてことをヤフーの記事かなんかで言ってましたが
感染成立するウイルスの個数とマスクでシャットアウトできる割合をまともに考えたら、何言ってんだって話にしかなりませんね。
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
そんな訳で、この呟きを見てまともに判断できる方々にはユニバーサルマスキングのご協力をお願い致します。
非科学や野蛮な方との分水嶺として、なぜユニバーサルマスキングが有効かを述べてみました。
またノーマスクだと空気清浄も限界があるの分かりますね。
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
どこぞのイキった方が「科学的な会食だ!」とパーテーションもなしに予防原則無視して会食かましてましたが、私の部屋の風量ですら一時間ちょっと会食したら風向き諸々きちんとしてないなら感染して終わりますけど……?
しかも、ずっとペラペラしゃべるんでしょう、大声も出るし、アウト。— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
予防の人はなぜ科学するかと言えば、こうやって確かめるからなんですね。
科学的をなっちゃってでカガクテキとか言う人、好きじゃないんですよ。予防ちゃんとやってない人を顧問にしても無駄だと思います、そんな訳で、ユニバーサルマスキングのご協力でした。
確かな見識がある人と組もうな!
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
(コロナに関する2つの『20』
・定点観測20人/医療機関当り=ヤバい。近くの病院に空きがなく遠くに搬送されだす。
・陽性率20%=ヤバい。検査数のキャパオーバー。市中感染者多、隠れ感染者を意味する。普段の行動を自衛レベルMAXにするタイミング
2つの『20』はざっくり経験値だけど覚えて貰えれば)— ramos2 (@ramos262740691) October 7, 2023
おかしな医療者がマスクをしたら免疫が下がると言ってますが無根拠です。
コロラド先生が仰る通りで新型コロナ感染後に免疫が破壊される証左は初期からありました、樹状細胞の著減、T細胞の著減、また免疫系の混乱も起こります。
他感染症への防御が低くなるため、本来は予防に徹するべきなのです。 https://t.co/GCnNlHfsAZ
— うじー@感染対策魔人はマスク着用と科学で対処 (@medical_for_all) October 8, 2023
東京都のXBB.1.5が増加中だが、中身に注意。ramosさんの解説。実は中身はXBB.1.5の子供のGK.1.1か。FLip変異という、ここ最近注目されている感染力の強い変異が入っている。東京に限らず、日本は「系統」で分けるので、子孫も系統に入っちゃっていることがある。増えると枝分かれするので、そろそろか https://t.co/qUNfbvRzeG pic.twitter.com/Het2dwPUQx
— Takuro⚓️コロナ情報in全国/神奈川/横浜/川崎/東京/大阪/岐阜/広島/宮崎/愛知/静岡 (@triangle24) October 7, 2023
やはり、東京都ゲノム解析のXBB.1.5系統の大部分はGK.1.1の可能性が。 https://t.co/HqbXz1wlgy
— Takuro⚓️コロナ情報in全国/神奈川/横浜/川崎/東京/大阪/岐阜/広島/宮崎/愛知/静岡 (@triangle24) October 8, 2023
気になって調べてみましたが、東京都で報告されているXBB.1.5の大多数はGK.1.1である可能性があります。ただ、XBB.1.5のアミノ酸配列から2か所しか変わらないので、XBB既感染者およびXBBワクチンで得られる抗体がどう反応するかのデータ待ちというところだと思います。https://t.co/KBz4Yw4w6C
— 渡瀬ゆず💉 (@kamo_kamos) October 8, 2023
GK.1.1xは、完全に見落としていましたが、明らかに10-2nd以降のドミナント候補株としては今一番勢いがありますね。
6月にXBB.1.9xからEG.5xが独立して注目していた頃ににています。
10-2nd以降のドミナント候補注目株
GK.1.1x
BA.2.86x
XBChttps://t.co/10smtlO9uZhttps://t.co/rTfjB7pYi8 pic.twitter.com/V33SG7eYKQ— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 8, 2023
ということで、10th Surgeは、次のように予測。
10-1st Surge EG.5.1x 発生中
10-2nd Surge GK.1.x, XBC 12月~
10-3rd Surge BA.2.86, XBC 1月~スペクトルの狭いワクチン選択圧力もあって日本株三度(みたび)あり得そうな感じです。
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 8, 2023
あと、Surgeに大きな寄与がなかったBA.2.75xですが、そろそろ2年に達するのに一定勢力を維持しており、遺伝子多様性の源泉と化しています。https://t.co/NHhMC7y0gO pic.twitter.com/p2fB91sjr7
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 8, 2023
免疫回避能力が高いくせにSurgeを起さなかった株って、長期間残る理屈は立てられますから、かなり厄介な代物かもしれません。
Surgeを起してくれれば人間が対応して選択圧力でその後は排除しますから。
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 8, 2023
XBCも不穏ですよね。
後は単なるバラつきかもとまだ希望を抱きたいけど、日本株のJL.1も上がり方が…という訳で
GK.1.1*(FLip)→JL.1(E1111Q)→BA.2.86と競合しながら上がり切らない変な波になる可能性もあるかなと、今日時点でざらっと見たときに思いました。
まぁ、予測に組み込むにはまだJL.1は pic.twitter.com/trtNZUeL7Q— ramos2 (@ramos262740691) October 8, 2023
XBCは、OWIDでは何故か独立株として扱われておらず、オセアニアでも統計が腐っている可能性は留保してもたいしたSurgeにならなかったので、BA.2.75同様に息の長い遺伝子多様性の源泉化する可能性もあると見ています。
XBBは、派手に暴れているので1年後には殆どなくなっているかも?
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 8, 2023
OWIDでは、XBCを組み換え株として表記
豪州で最盛期が二回あってだいたい30%台。いまはEG.5xに圧されて減退期。
日本では1~2%と安定していてしばらく居座りそう。https://t.co/jJhSKtqeES pic.twitter.com/Pyh8ZNSxSL
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 8, 2023
HK.3の成長優位性68%は最近のごちゃごちゃした中ではかなり強めと思うので
GK.1.1を抜いてHK.3→JL.1 or BA.2.86 or Other? (HV.1とか…)
くらいに予測を変更しておきます。https://t.co/XnSlbUJDIG— ramos2 (@ramos262740691) October 9, 2023
コロナウイルス感染で入院した患者を退院から5ヶ月後にMRI検査したところ、感染しなかった人と比べて脳異常が約3倍、肺異常が約14倍、腎臓の異常が約2倍の頻度で発生していたという研究。https://t.co/6bnnaVvGqa
— Angama (@Angama_Market) October 10, 2023
◆Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study【LANCET 2023年9月22日】
Summary
Introduction
The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures.
Methods
In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025.
Findings
Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation.
Interpretation
After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification.
フランスで、新型コロナウイルス変異株ピロラ株にさらにスパイクプロテインの変異が起こったJN.1という株が、ピロラ株を置き換えているという情報。 https://t.co/X3gcWB4KdV
— Angama (@Angama_Market) October 10, 2023
The data is still scarce, but based on the recent data in France, JN.1 seems to be displacing "Vanilla" BA.2.86.1.
The error bars are high with few samples, but the growth needs to be monitored. @mvankerkhove @WHO @DrTedros @EricTopol @ScottGottliebMD https://t.co/z2MFr7KKJi pic.twitter.com/tWv7kY9Y9d
— JWeiland (@JPWeiland) October 9, 2023
BA.2.86* still has a low prevalence worldwide, but continues to grow in proportion each week. Already we are seeing it quickly grab onto important mutations to increase its growth. This is what we've been concerned would happen with this particular variant.
— JWeiland (@JPWeiland) October 10, 2023
Both Marc Johnson (@SolidEvidence ) and @yunlong_cao have mentioned that L456S is a strong class 1 antibody escape mutation. BA.2.86 had some good neutralization from Class 1 antibodies, so this will more than likely improve its success significantly.https://t.co/HjX1t3mS4D pic.twitter.com/rojuufJNhV
— JWeiland (@JPWeiland) October 10, 2023
Update:
More JN.1 and base BA.2.86(1) uploaded from France, 9 of 12 are JN.1 in latest week.
Widespread geographic distribution, not a cluster.
Confidence increasing that JN.1 is displacing base BA.2.86(1) rather quickly. pic.twitter.com/7a18sUnlwc
— JWeiland (@JPWeiland) October 12, 2023
HK.3
Singaporeが既にFLipにやられたと聞いて。
1枚目、EG.5*一強。あとシークエンス数(下の縦棒)のバラつきに注意と。100%のspikeはシークエンス数全然ない日なので頭の中で消して見るのがおすすめ。
2枚目、で?中身は?9月頭からのHK.3ジャンプによるもの。 pic.twitter.com/lQpgbnVMMp— ramos2 (@ramos262740691) October 9, 2023
さて、日本は?
1枚目、先日見た通りFLipの2位につけている。勢いは?
2枚目、最近のFLipの山を支えてる
3枚目、うんいずれ1位に成りそうね
世界では?
4枚目、シンガポール、中国、韓国、日本の順。
ほぅ、アジアから始まりそうね。FU.1とかEG.5の時もこうじゃなかったっけ?既視感ぱねぇ pic.twitter.com/HjaPXLpU7T— ramos2 (@ramos262740691) October 9, 2023
1枚目、日本ではまだ見つかってない生き残っている県もあるなぁ。半数ってとこか?
じゃ、日本での勢いは?2枚目、成長優位性68%
— ramos2 (@ramos262740691) October 9, 2023
夏に沢山感染したはずなのに、早くも下げ止まり傾向の日本。
こういう時は裏で何か始まってるんだよなと。
ちょっと見てきたけど、やはりHK.3
米国ではHV.1が1ヶ月で首位になって注目されてるけど、日本はHK.3これが、1週間前と同じく成長優位性65%と、凄い値を未だに出している。 pic.twitter.com/lgeXBGghHo
— ramos2 (@ramos262740691) October 17, 2023
中国は既にやられた模様。
HK.3が一旦来るか?— ramos2 (@ramos262740691) October 17, 2023
コロナウイルスに対するヒト回復期血漿の抗体やモノクローナル抗体が、デング熱と交差反応を起こし、抗体依存性増強(ADE)でデング熱の感染性を高めていることが分かったという研究。
SARS-CoV-2 antibodies cross-react and enhance dengue infection https://t.co/00fVJdLQBi
— Angama (@Angama_Market) October 12, 2023
最悪のカップル:SARS-COV-2+デング熱!
"SARS-CoV-2抗体は交差反応し、デング熱感染を増強する" https://t.co/myIp5CTC13…
"SARS-CoV-2(RBDとスパイク)に対する抗体は、DENV-2(Eタンパク質)と有意な交差反応性を示した。" https://t.co/2NGjasrm5D— R連続体 MT Ph.D D.H.Sc. (@Rrenzokutai) October 11, 2023
THE BAD COUPLE : SARS-COV-2+DENGUE !
"SARS-CoV-2 antibodies cross-react and enhance dengue infection" 😨 https://t.co/WA8UdhOMjt
"Antibodies against SARS-CoV-2 (RBD and Spike) showed significant cross reactivity with DENV-2 (E protein)."(Visuals from a previous study) pic.twitter.com/vqioeVMaZ4
— Emmanuel (@ejustin46) October 11, 2023
2) "Also, anti-SARS-CoV-2- commercial antibodies, immunised animal sera and 46 human convalescent plasma samples (from different waves of pandemic) demonstrated antibody-dependent enhancement (ADE) of DENV-2 infection." pic.twitter.com/wCtxF8fITw
— Emmanuel (@ejustin46) October 11, 2023
3) Fig. ADE of dengue virus infection by the SARS-CoV-2 positive patients' sera in K562 cells. pic.twitter.com/f8L2IW9hcN
— Emmanuel (@ejustin46) October 11, 2023
4) Fig. Computational insights exploring the cross-reactive SARS-CoV-2 antibodies at DENV-2 E protein pic.twitter.com/7KgQRogd1L
— Emmanuel (@ejustin46) October 11, 2023
Sorry as the link seems broken.
Here it might work https://t.co/gchqsVqlSs— Emmanuel (@ejustin46) October 11, 2023
◆SARS-CoV-2 antibodies cross-react and enhance dengue infection【bioRxiv 2023年10月9日】
Abstract
Dengue disease is highly prevalent in tropical and subtropical regions worldwide. However, its pathogenesis is still incompletely understood, particularly in comparison to other endemic viruses. Antibody-dependent enhancement (ADE) is a well-known phenomenon for dengue viruses. Given the recent surge in dengue cases and potential cross-reactivity with SARS-CoV-2 antibodies, this study explores the impact of anti-SARS-CoV-2 antibodies on DENV-2 infection.
The study assessed the cross-reactivity of SARS-CoV-2 antibodies with the DENV-2 Virus. Human convalescent plasma samples collected during different waves of COVID-19 and monoclonal and polyclonal antibodies raised against SARS-CoV-2 were examined for their potential to cause ADE of DENV-2 infection using cell-based assays. The study found that anti-SARS-CoV-2 antibodies acquired from natural infection in humans or through experimental immunization in animals were cross-reactive with DENV-2 and had the potential to enhance DENV-2 infection in K562 and U937 cells. In-silico and in-vitro studies indicated a strong interaction between SARS-CoV-2 antibodies and DENV-2 E-protein, providing a molecular basis for these findings. This study is the first to demonstrate that anti-SARS-CoV-2 antibodies can cross-react with DENV-2 and can enhance its infection through ADE. These findings have implications for SARS-CoV-2 vaccine development and deployment strategies in regions where dengue is endemic.
Summary Antibodies against SARS-CoV-2 (RBD and Spike) showed significant cross reactivity with DENV-2 (E protein). Also, anti-SARS-CoV-2-commercial antibodies, immunised animal sera and 46 human convalescent plasma samples (from different waves of pandemic) demonstrated antibody-dependent enhancement (ADE) of DENV-2 infection.
Introduction
Dengue virus (DENV) is a positive-sense single-stranded RNA virus with a genome size of ∼11kb belonging to the Flaviviridae family and causes the most prevalent mosquito-borne disease called dengue. Dengue is endemic to more than 120 countries with Asia contributing 70% of the global burden. The COVID-19 pandemic has had a substantial impact on Dengue cases globally with many countries reporting significant a surge since 2020. In 2021, prevalence of dengue has increased over three times in India (44,585 versus 193,245 cases), 19 times in Bangladesh (1,405 versus 28,429 cases), 2 times in Singapore (5,000 versus 11,000), over 1.8 times in Malaysia (87,000 versus 120,000 cases), and more than seven times (6,016 vs. 52,894 instances) in Pakistan. Taiwan, Sri Lanka, Mexico, and the Philippines have also reported notable increase, while Brazil documented a surge in severe cases and fatalities predominantly impacting younger population under 20 years of age during the period of 2021-2022. DENV circulates as four serotypes (DENV 1-4) each containing multiple distinct genotypes. Infection with any serotype can lead to mild fever or severe forms like Dengue Haemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS). Primary infection provides lifelong immunity to homotypic secondary infection but gives partial immunity from heterotypic challenge. Such heterotypic secondary infections positively correlate with severe symptoms, as a consequence of higher viremia through Antibody-dependent Enhancement (ADE). ADE is caused by sub-neutralizing antibodies from previous infection binding to DENV virion and promoting FcR-mediated viral entry into the cells bearing Fc-receptor. ADE occurs when the number of bound antibodies support stable attachment to Fc receptors, without reaching the neutralization threshold.
Presently there are multiple reports showing modest serological cross-reactivity between SARS-CoV-2 and DENV-2, significantly impacting dengue diagnostics. However, it is yet unclear if this would have any clinical impact on dengue cases. A study reported IgG produced in rabbits upon immunization with purified SARS-CoV-2 S1-RBD, to cross-react with DENV proteins, particularly the Envelope (E), precursor-Membrane (PrM), and Non-structural protein 1 (NS1). However, these antibodies did not enhance DENV infection (ADE) in THP-1 cells which express FcR. Contrarily a study showed in-vitro inhibition of dengue infection by sera from convalescent COVID-19 patients sera.
In this pretext, our current study aimed to examine if SARS-CoV-2 antibodies have any impact on DENV-2 infection. To the best of our knowledge, this will be the first study to provide a blueprint as to how SARS-CoV-2 antibodies cross-reactive with DENV-2 (particularly E protein) may enhance dengue infection via ADE, using a combination of experimental and computational studies.
コロナウイルスが、スパイクプロテインの遺伝子の位置を僅かに置換することで、季節性インフルエンザと似た方法で効率的に免疫を回避していることが分かったという研究。また、これにより個人間の免疫反応に大きなばらつきが生じ、人によってリスクが異なる状態になっていたhttps://t.co/T2dMdgG7S7
— Angama (@Angama_Market) October 10, 2023
呼吸器系疾患を起こすウイルスで、血管細胞に直接感染できるのはコロナウイルス(SARS-CoV-2)だけなのか。人類にとって未知の領域に入ったな。
— Angama (@Angama_Market) October 11, 2023
◆Mapping SARS-CoV-2 antigenic relationships and serological responses【Science 2023年10月6日】
Structured Abstract
We previously reported that treatment of mice with 6-gingerol, the most abundant phytochemical in ginger root, leads to phosphodiesterase inhibition that counteracts neutrophil hyperactivity in models of antiphospholipid syndrome (APS) and lupus. Here, we explored the extent to which oral intake of a whole-ginger extract would similarly impact neutrophils in both autoimmune mice and healthy humans. In vitro, a solubilized ginger extract was able to attenuate neutrophil extracellular trap formation (NETosis) by human neutrophils through a mechanism that was dependent upon the cyclic AMP–dependent kinase, protein kinase A. When mice with features of either APS or lupus were administered a ginger extract orally, they demonstrated reduced circulating NETs, as well as the tempering of other disease outcomes, such as large-vein thrombosis (APS) and autoantibody production (lupus). In a pilot clinical trial, which was validated in a second cohort, daily intake of a ginger supplement for 7 days by healthy volunteers boosted neutrophil cAMP, inhibited NETosis in response to disease-relevant stimuli, and reduced circulating plasma NET levels. In summary, this work demonstrates that ginger intake restrains neutrophil hyperactivity in autoimmune mouse models and that ginger consumption by healthy individuals makes their neutrophils more resistant to NETosis.
INTRODUCTION
Vaccination has greatly reduced the disease burden of SARS-CoV-2. However, since late 2020, variants have emerged that are able to escape immunity from vaccination and previous infections, including B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron and its descendants). In combination with vaccination, infections with different variants form the basis of current population immunity against SARS-CoV-2.
RATIONALE
Understanding the antigenic relationships among SARS-CoV-2 variants, the substitutions that cause antigenic change, and how the immune response is shaped by previous infections, is crucial for understanding the evolution of the virus, determining whether new variants avoid neutralization from antibodies induced by current vaccines, and evaluating the need for vaccine updates.
To this end, we analyzed patterns of neutralization and cross-reactivity among a panel of 21 SARS-CoV-2 variants and 15 groups of human sera obtained from individuals after primary infection with one of 10 different variants or after D614G or B.1.351 vaccination. First, we sought to understand patterns of cross-reactivity and response breadth in postvaccination responses 4 weeks and >3 months after second or third vaccine doses. Then, we used antigenic cartography to visualize antigenic relationships between 21 SARS-CoV-2 variants and experimentally test point mutations to investigate the drivers of the antigenic changes observed in the antigenic map. Lastly, we investigated how serological reactivity postinfection relates to the primary-exposure variant.RESULTS
Quantifying changes in cross-reactivity and response breadth after vaccination, our results show the largest increase between 4 weeks and >3 months after a second dose. In particular, we found that the main short-term effect of the third vaccination was to boost the magnitude of a response that had already become more cross-reactive rather than to generate significant additional breadth of cross-reactivity.
Using antigenic cartography, we inferred and subsequently experimentally tested our inference that antigenic differences among pre-Omicron variants are primarily caused by substitutions at spike-protein positions 417, 452, 484, and 501 (see figure, top). The experimental effect of these substitutions was largely consistent with those inferred from the map.
We also found that sensitivity to these substitutions varied greatly between individuals infected with different variants. These differences are consistent with substantial changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to and the amino acid present at these positions in the eliciting variant (see figure, bottom). For example, whereas sera of individuals exposed to D614G, B.1.1.7, and B.1.617.2 variants are sensitive to changes at position 484, sera of individuals exposed to B.1.351 and P.1 are not.CONCLUSION
Our results provide a comprehensive analysis of the antigenic variation between SARS-CoV-2 variants and the development of the immune response after infection or vaccination. The large antigenic effect of a small number of substitutions in the receptor-binding domain (RBD) of SARS-CoV-2 is similar to the pattern observed for seasonal influenza viruses, for which major antigenic changes are often associated with single or double substitutions. These substitutions in the SARS-CoV-2 RBD not only allow the virus to escape from preexisting immunity but also influence the regions of the spike protein that the immune response targets. Depending on their infection history, different individuals can thus be sensitive to substitutions in different regions of the spike protein. As individuals increasingly experience multiple infections, choosing vaccine immunogens on the basis of immunodominance considerations may be an important aspect in ensuring high vaccine efficacy across populations with different patterns of preexisting immunity.
インドでコロナウイルス感染で入院した患者の長期障害有病率を追跡調査した結果、ほとんどの症状が10ヶ月以上経過後も横ばいで継続。精神疾患や倦怠感は約7ヶ月後からむしろ増加しているという情報。 https://t.co/HPrP8NMAUQ
— Angama (@Angama_Market) October 11, 2023
Post COVID sequelae among COVID-19 survivors: insights from the Indian National Clinical Registry for COVID-19
❗Confirmation again of high LongCovid %
India, Hospitalized C19 patients: September 2020-October 2022
➡️"Dyspnoea, fatigue and mental health issues were reported… pic.twitter.com/hMBt07fzHH
— Harry Spoelstra (@HarrySpoelstra) October 11, 2023
軽度のコロナウイルス感染で、ミクログリアとマクロファージの反応によって高い神経炎症が発生。これで海馬の神経新生が損なわれ、希突起膠細胞が枯渇し、有髄軸索が減少して認知障害を起こすため、脳炎症の抑制と海馬の神経新生で長期障害を予防できる可能性があるという研究https://t.co/lmQY3CXbih
— Angama (@Angama_Market) October 11, 2023
◆Role of Microglia, Decreased Neurogenesis and Oligodendrocyte Depletion in Long COVID-Mediated Brain Impairments【Aging and Disease 2023年9月24日】
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a recent worldwide coronavirus disease-2019 (COVID-19) pandemic. SARS-CoV-2 primarily causes an acute respiratory infection but can progress into significant neurological complications in some. Moreover, patients with severe acute COVID-19 could develop debilitating long-term sequela. Long-COVID is characterized by chronic symptoms that persist months after the initial infection. Common complaints are fatigue, myalgias, depression, anxiety, and “brain fog,” or cognitive and memory impairments. A recent study demonstrated that a mild COVID-19 respiratory infection could generate elevated proinflammatory cytokines and chemokines in the cerebral spinal fluid. This commentary discusses findings from this study, demonstrating that even a mild respiratory SARS-CoV-2 infection can cause considerable neuroinflammation with microglial and macrophage reactivity. Such changes could also be gleaned by measuring chemokines and cytokines in the circulating blood. Moreover, neuroinflammation caused by mild SARS-CoV-2 infection can also impair hippocampal neurogenesis, deplete oligodendrocytes, and decrease myelinated axons. All these changes likely contribute to cognitive deficits in long-COVID syndrome. Therefore, strategies capable of restraining neuroinflammation, maintaining better hippocampal neurogenesis, and preserving oligodendrocyte lineage differentiation and maturation may prevent or reduce the incidence of long-COVID after SARS-CoV-2 respiratory infection.
韓国でコロナウイルス感染者約35万人を健康な人と比較調査した結果、全頭脱毛症、クローン病、サルコイドーシスが約2倍の確率で発生。抗好中球細胞質抗体関連血管炎は約3倍の確率で発生していることが分かったという研究。https://t.co/fU0kVfDUgV
— Angama (@Angama_Market) October 11, 2023
確かに、コロナウイルス感染後に病的に髪が薄くなった人は、有名人も含めて非常に多い。
— Angama (@Angama_Market) October 11, 2023
◆Autoimmune and Autoinflammatory Connective Tissue Disorders Following COVID-19【JAMA Network 2023年10月6日】
Key Points
Question Is COVID-19 associated with an increased risk of autoimmune and autoinflammatory disorders?
Findings This cohort study including 354 527 individuals with COVID-19 and 6 134 940 controls identified a significant elevation in the risk of multiple incident autoimmune and autoinflammatory disorders subsequent to COVID-19. Notably, certain disease risks exhibited a positive association with the severity of COVID-19.
Meaning These findings suggest that autoimmune and autoinflammatory connective tissue disorders may manifest as post–COVID-19 sequelae, highlighting the potential long-term health ramifications associated with COVID-19; long-term management should include evaluating the development of such disorders in patients who had COVID-19.
Abstract
Importance Multiple cases of autoimmune and autoinflammatory diseases after COVID-19 have been reported. However, their incidences and risks have rarely been quantified.
Objective To investigate the incidences and risks of autoimmune and autoinflammatory connective tissue disorders after COVID-19.
Design, Setting, and Participants This was a retrospective population-based study conducted between October 8, 2020, and December 31, 2021, that used nationwide data from the Korea Disease Control and Prevention Agency COVID-19 National Health Insurance Service cohort and included individuals who received a diagnosis of COVID-19 via polymerase chain reaction testing and a control group with no evidence of COVID-19 identified from National Health Insurance Service of Korea cohort. Data analysis was conducted from September 2022 to August 2023.
Exposures Receipt of diagnosis of COVID-19.
Main Outcomes and Measures The primary outcomes were the incidence and risk of autoimmune and autoinflammatory connective tissue disorders following COVID-19. A total of 32 covariates, including demographics, socioeconomic statuses, lifestyle factors, and comorbidity profiles, were balanced through inverse probability weighting. The incidences and risks of autoimmune and autoinflammatory connective tissue disorders were compared between the groups using multivariable Cox proportional hazard analyses.
Results A total of 354 527 individuals with COVID-19 (mean [SD] age, 52.24 [15.55] years; 179 041 women [50.50%]) and 6 134 940 controls (mean [SD] age, 52.05 [15.63] years; 3 074 573 women [50.12%]) were included. The risks of alopecia areata (adjusted hazard ratio [aHR], 1.12; 95% CI, 1.05-1.19), alopecia totalis (aHR, 1.74; 95% CI, 1.39-2.17), antineutrophil cytoplasmic antibody–associated vasculitis (aHR, 2.76; 95% CI, 1.64-4.65), Crohn disease (aHR, 1.68; 95% CI, 1.31-2.15), and sarcoidosis (aHR, 1.59; 95% CI, 1.00-2.52) were higher in the COVID-19 group. The risks of alopecia totalis, psoriasis, vitiligo, vasculitis, Crohn disease, ulcerative colitis, rheumatoid arthritis, adult-onset Still disease, Sjögren syndrome, ankylosing spondylitis, and sarcoidosis were associated with the severity of COVID-19.
Conclusions and Relevance In this retrospective cohort study, COVID-19 was associated with a substantial risk for autoimmune and autoinflammatory connective tissue disorders, indicating that long-term management of patients with COVID-19 should include evaluation for such disorders.