SARS-CoV-2 と COVID-19 に関するメモ・備忘録
7回目ですね
接種率どんどん減ってるみたいですもしよろしければ、接種リスク率と接種しないリスク率について教えていただけると嬉しいです
私は接種した方がメリット大きそうに感じてますが何か気持ち悪くて3回以上打てずにいます
NHK『新型コロナ ワクチン情報一覧』https://t.co/4vL905i3M2
— さとし-Satoshi / Saitama Japan (@yamadasatoshi7) October 17, 2023
世界一の濫用国なので、来年以降、面白い結果が出そうで僕は注目しています。
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
これはワクチン全般に言えるのですが、特にリスク・ベネフィットの比較考量が成立し難いFlu ShotとmRNA系COVID Shotについては、リスクとベネフィットをきちんと評価して考える必要があります。→
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→実例として僕と息子のFlu Shotについての意思決定を例示します。
息子は、自閉症且つ、代謝系に異常がありましたが、ワクチン接種は全て行っていました。当時は自閉症とMMRワクチンの関係がかなりの騒ぎとなっており(現在は否定で結論済み)、かなり慎重を期しましたが、Flu Shotに化血研の→
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→チメロサール無しワクチンを取り寄せることで全てのワクチンを打っています。合衆国に6歳の時に連れて行ったので、合衆国準拠の接種を2年かけて計画的に行い、書類も作りました。
かかりつけ医の協力のおかげです。お金もかかりませんでした。Flu Shotも同じ値段。親も同時に打つのでむしろ割安。
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→帰国後もワクチン接種は規定通り行いましたが、Flu Shotについては4年生の頃から夫婦で話し合いを始めました。
息子はFlu Shotをすると一月体調を崩して休みがちになる。そして2月にはFluに感染して1週間単位で休む。
僕もFlu Shotをすると当月は寝込みがちになり、2月には大学で移されて寝込む。
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→僕はそれでもFlu Shotは継続すべきと言う意見でしたが、母親は、息子にも僕にも有害無益なので取りやめるべきと言う主張で、その後2年越しで観察した上でFlu Shotの接種の利益は極めて低く、接種の不利益は高過ぎる為、僕と息子はFlu Shotについては接種取りやめました。→
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→その後の経過を見ると、息子も僕も秋に体調不良で寝込むことなくなり、2月には、やはり感染しましたが、1週間で回復することに変わりはなく、僕と息子には平時は不要なワクチンでした。→
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→COVID-19 Shotの場合、ワクチンの有害事象がケタ違いに多く、死亡率もFlu Shotより1~2桁高く、しかもmRNA系は特に免疫への長期干渉が深刻である可能性があって、それを肯定する知見は日々積み上がっています。
→— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→一方で、COVID-19の致命率は、特定の年齢階層、生別等で%の桁であるため、これを半減させるだけでも大きな利益となります。
1. 接種による利益は、死亡率の低減が40%程度。(3ヶ月間半減と見做せば良い)
2. Long COVIDが概ね半減と見込まれる
3. 合意されていないが、軽症でも若干症状が軽減
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→この中で死亡率の低減が最も重要で、死亡率の低減は、重症化=入院の低減と同じ意味です。
高齢者では2~10%死にますので、この年齢層では、接種の利益は個人にも集団にも大きいです。
また、高齢者では有害事象が少ないです。
→
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→また50代でもCOVID-19の致命率(CFR)は、数‰ですので、接種の利益はあります。但し特に男性では心筋炎の有害事象が生じ得ますので接種のリスクもあります。接種によって数日寝込むことも現役世代には接種による大きな損失です。
故に僕は50代では個々人で検討としています。→
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
→現役世代では、抗ウイルス剤を適切に投薬するほうが遥かにマシでしょう。
40代以下ですと致命率CFRは、100ppmの桁ですので接種の利益は不利益に比較して小さなものになります。故に非推奨としています。
但し、感染リスクの高い医療・介護従事者、学校幼保の教職員には、接種を推奨しています。
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
COVID-19ワクチンについて、海外情報を中心(国内情報はほぼ使わない)に使った上で、ここまでの判断は、20年からずっと一貫しています。
学問と事実に忠実に分析、判断すれば、多少の違いはあっても誰でも同じ結論になると考えています。
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
1年以上空けるべきではないのですが、どう考えても21年中に初期プロトコールの2回、22年に拡張プトロコールの3回目、24年秋に年次定期接種の4回目でしょうね。
世界を見ても運用結果は、ほぼそうなっています。
日本では、mRNA系の濫用による免疫干渉が来年くらいには世界から関心を集めそうです。
— Hiroshi Makita Ph.D. 誰が日本のコロナ禍を悪化させたのか?扶桑社8/18発売中 (@BB45_Colorado) October 18, 2023
まって、今気が付きました。これだと確実に
「気のせい」は排除できますよね。— #コロナ後遺症 と #ワクチン長期副反応 と #ME/CFS の悩みを解決する窓 (@korowakunayami) October 17, 2023
コロナウイルスが2本鎖RNAを生成した瞬間にToll様受容体-3が過剰反応するのが最上流の原因だと思います。そこからあとは雪崩です。https://t.co/WKJVJ8EGCn
— Angama (@Angama_Market) October 18, 2023
◆Viral-like TLR3 induction of cytokine networks and α-synuclein are reduced by complement C3 blockade in mouse brain【nature scientific reports 2023年9月13日】
Abstract
Inflammatory processes and mechanisms are of central importance in neurodegenerative diseases. In the brain, α-synucleinopathies such as Parkinson’s disease (PD) and Lewy body dementia (LBD) show immune cytokine network activation and increased toll like receptor 3 (TLR3) levels for viral double-stranded RNA (dsRNA). Brain inflammatory reactions caused by TLR3 activation are also relevant to understand pathogenic cascades by viral SARS-CoV-2 infection causing post- COVID-19 brain-related syndromes. In the current study, following regional brain TLR3 activation induced by dsRNA in mice, an acute complement C3 response was seen at 2 days. A C3 splice-switching antisense oligonucleotide (ASO) that promotes the splicing of a non-productive C3 mRNA, prevented downstream cytokines, such as IL-6, and α-synuclein changes. This report is the first demonstration that α-synuclein increases occur downstream of complement C3 activation. Relevant to brain dysfunction, post-COVID-19 syndromes and pathological changes leading to PD and LBD, viral dsRNA TLR3 activation in the presence of C3 complement blockade further revealed significant interactions between complement systems, inflammatory cytokine networks and α-synuclein changes.
Introduction
Viral infections and consequent brain inflammation increase neurodegenerative disease risk
Inflammatory processes and mechanisms have emerged to be of central importance in the genesis of neurodegenerative diseases. Neuroinflammation, characterized by reactive microglia and astrocytes, and elevated levels of inflammatory mediators in the brain, was traditionally viewed as secondary to neuronal death and dysfunction in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Contrary to this conventional view, there is now robust evidence from preclinical and clinical studies that immune activation can contribute to and drives disease pathogenesis. Drivers of such inflammation can be cell-autonomous or the result of network interaction between neurons, glia, vascular and blood-derived agents. We and others have previously shown that bacterial, viral, lipid, or metabolic activators are potent initiators of such neuroinflammation. Of particular interest are the dsRNA toll like receptor 3 (TLR3) receptor activators from viral sources that can initiate such inflammatory cascades.
Viral and other inflammatory conditions are linked to increased risk of neurodegenerative diseases and cognitive dysfunction. Systemic cytokine elevations following viral infection, such as those that cause cytokine storm in patients with COVID-19, are associated with cytokine and glial activations in the brain. Infection with Epstein-Barr virus (EBV) is associated with a 32-fold increased risk for developing multiple sclerosis, with onset of disease symptoms beginning approximately 10 years after infection16. Furthermore, recent epidemiological studies provide compelling evidence that repeated viral infections causing influenza drastically increase the probability (more than tenfold) of developing neurodegenerative diseases. Viral outbreaks, including the 1918 influenza pandemic and periodic mosquito-borne flavivirus epidemics such as Japanese encephalitis virus and West Nile virus, have led to subsequent diagnoses of post-encephalitic parkinsonism among survivors of the incident viral infection. Given the risk of neurological “long-COVID” symptoms following SARS-CoV-2 infection, evidence of COVID-induced changes in brain regions that are related to cognition and neurological disorders, and association of COVID-19 with onset of neurodegenerative disease, it is highly significant to establish the underlying biological cellular brain responses that are associated with TLR3 activation and viral inflammation. In the context of historical viral outbreaks and the current COVID-19 pandemic, understanding how the long-term consequences of such viral infections could precipitate degenerative changes within vulnerable brain regions is of current and critical importance.
Several inflammatory processes have been shown to be linked to the classic pathological hallmarks of neurodegenerative diseases at post-mortem. For example, α-synuclein, which is associated with neuropathology of PD and Lewy body dementia (LBD), is increased and aggregates in response to cellular stressors, such as mitochondrial dysfunction, lipid accumulation, and inflammation. Injection of the toll like receptor 4 (TLR4) agonist, lipopolysaccharide (LPS), into the midbrain of rodents induces activation of inflammatory cytokine networks, accumulation of insoluble and aggregated α-synuclein and dopamine neuron degeneration, and long-term systemic administration of low-dose LPS administration in mice induces significant reductions of dopaminergic neurons. It has also been shown that α-synuclein is upregulated by certain viral infections. Deficiency of α-synuclein in mice increases susceptibility to infection by viral or bacterial causes, suggesting that α-synuclein can participate in anti-microbial functions. Importantly, α-synuclein accumulation has been reported in the brain of rodents and non-human primates following SARS-CoV-2 systemic infection. These connections between acute α-synuclein functional responses to potent inflammatory stimuli, and pathological α-synuclein increases that lead to aggregation associated with chronic inflammatory cytokine and glial activations in brain regions vulnerable to degeneration, highlight that inflammation is a critical driver of pathology in neurodegenerative disease.
Brain responses to viral-like TLR3 activation
The cellular milieu of the brain and periphery carries many receptors for immune activation, and it is important to understand how such receptor systems and cells can trigger neuroinflammation. Typically, evolutionarily conserved immune responses are linked to receptors specialized in recognizing bacterial and viral components. TLRs recognize specific pathogen and damage-associated molecular patterns. The function of TLRs is to surveil extracellular and intracellular environments for signs of infection or damage and to signal the activation of innate immune and inflammatory responses to clear infection and remove apoptotic cells. The up-regulation of TLRs has been demonstrated in brains with α-synucleinopathies, such as PD, LBD, and multiple system atrophy (MSA). For these reasons, it is of critical importance to experimentally model conditions that mimic viral-like activation of receptors designated for immune activation. TLR3 specifically recognizes and is activated by dsRNA, which are intermediates of viral replication, and signals downstream anti-viral immune and inflammatory responses. Brain TLR3 activation has previously been modelled in vivo by direct administration of the synthetic viral-like dsRNA mimetic, Poly(I:C), into rodent brain. TLR3 activation by the administration of Poly(I:C) into substantia nigra and striatum led to a timeline of neuroinflammatory responses, characterized by activation of astrocytes and microglia within 4 days that continued to increase until peak activation at 12 days during cytokine storm, and persisted for 33 days. While TLR3 activation by itself was not sufficient to induce neurodegeneration, priming with such viral mimetics exacerbated the degeneration of nigral dopaminergic neurons to subsequent injection of 6-OHDA and to a small molecule inducer of α-synuclein fibril formation, showing that brain inflammation increases the vulnerability of neurons to additional stress. Neutralizing the Poly(I:C) induced brain inflammation by systemic administration of IL-1 receptor antagonist protected the nigral dopaminergic neurons from the damage caused by TLR3 activation combined with 6-OHDA, demonstrating that persistent inflammation of the brain increases neuronal vulnerability to additional damage, while reducing inflammation promotes neuronal cell resilience. The clear evidence for long-term brain inflammatory and degenerative sequelae to viral infections, which has led to subsequent neurological diagnoses such as post-encephalitic parkinsonism, supports the hypothesis and findings that preventing brain inflammatory responses caused by viral-like TLR3 activation could be protective.
Targeting the complement pathway to reduce inflammatory activations
In the sequence of events that typically follow viral or bacterial perturbations, there are well-known activation cascades including the innate acute response involving complement factors. The complement system, an integral part of the innate immune system, plays a vital role in clearance of pathogens by mounting an inflammatory response. Additionally, two components of this pathway, C1q and C3, have been identified to play beneficial role in microglial regulation of synaptic pruning during neural development and excessive pruning in adult brain have been implicated in neurodegeneration. Complement can be activated by three different pathways, a C1q-dependent classical pathway, and C1q-independent alternative and lectin pathways. All three activation axes converge on the enzymatic cleavage of complement factor C3 into C3a and C3b fragments. C3b in conjunction with other proteins lead to cleavage of C5 into C5a and C5b. C5b along with C6 through C9, constitute the terminal lytic pathway that leads to the formation of the membrane attack complex (MAC). The three main effector functions of the complement cascade include opsonization of C3b, C4 and C1q tagged target cell, immune cell recruitment to the site of injury by the anaphylatoxins C3a and C5a, and lysis of the target cell by the formation of MAC. TLRs and the complement cascade are both part of the innate immune system and respond to pathogenic infections, and interactions between them are plausible.
It is of great interest to explore the influence of complement system blockade in reducing brain inflammatory processes and factors, such as α-synuclein in PD and LBD. With the presence of multiple activation pathways and downstream effects, the complement system can be targeted at several levels depending on the desired outcome. While blocking action of the anaphylatoxins C3a by the C3aR antagonist SB290157, and C5a by the C5aR antagonists PMX53 and PMX205, will inhibit inflammation and opsonization of target cells, targeting C5b, and or C6 through C9 would block the terminal lytic pathway. Being at the convergence point of multiple complement activating pathways, C3 is a good target to manipulate all branches of the complement cascade, and this was the approach utilized in this study.
The current study utilized a rodent model of TLR3 activation in combination with a C3 splice-switching antisense oligonucleotide (ASO) specific to complement C3, to reduce C3 expression in the brain in vivo. The aim of this study was to experimentally model innate brain immune responses following TLR3 viral-like activation, and to examine how blocking complement C3 activation during TLR3 stimulation can reduce acute cellular and inflammatory responses downstream of TLR3. Mice received two brain injections of C3 ASO or control ASO at separate timepoints, followed by injection of dsRNA (PolyI:C) to activate brain TLR3 receptors. Changes in brain levels of complement pathway proteins, cytokines and α-synuclein were examined in the acute phase of TLR3 activation at 2 days following injection of dsRNA.
フランスでは新型コロナウイルス変異株JN.1が週ごとに倍に増加しており、ピロラ株を圧倒しているという情報。JN.1はイギリスなど他の国でも増加しており、このままだとおそらく11月中旬に波のピークを迎えると予測される。 https://t.co/pNEebr7umn
— Angama (@Angama_Market) October 19, 2023
#JN.1 #Pirola is demonstrating strong growth in France, where its been found most frequently. At 2% by Oct 2.
These estimates tend to skew high early with a new variant.
To me it looks likely >100%/wk, which would make it more than twice as fast as anything else out there. pic.twitter.com/s5pSOUXQSY
— JWeiland (@JPWeiland) October 17, 2023
We are also seeing it outcompete the baseline BA.2.86.1 quickly in France. Now more than 50% of Pirola in France are JN.1, in just a few weeks.
If >100% holds, JN.1 could drive a wave in France as early as mid November.
More data can change that timeline. pic.twitter.com/t5yCJJAP41
— JWeiland (@JPWeiland) October 17, 2023
This chart from @RajlabN shows it growing in various places. Take a look at the UK, also showing exceptionally fast growth https://t.co/GVJATLdCh4 pic.twitter.com/uJUoO0rvrP
— JWeiland (@JPWeiland) October 17, 2023
Nick Rose @Asinickle1 has been doing a fantastic job keeping track of JN.1, and has also been estimating growth. We are arriving at close to the same numbers.https://t.co/KRLMvOkLB7
— JWeiland (@JPWeiland) October 17, 2023
Some of us have been told that were focusing too much on Pirola vs other variants.
We thought from the early on that it was going to quickly optimize.
I think our focus has been warranted.https://t.co/OZpOwloI8M
— JWeiland (@JPWeiland) October 17, 2023
We now have antibody neutralization titers from @yunlong_cao , and they're right about as expected for JN.1, given it's growth.
JN.1 appears to cut the antibody effectiveness in half compared to the strong FLips.
A significant evolution here.https://t.co/bF66V2PkFt pic.twitter.com/Z3cR3zTY4S
— JWeiland (@JPWeiland) October 18, 2023
カナダでは全土に渡ってコロナウイルス入院数が増加しており、去年の冬以来最悪の水準になっているという記事。
COVID-19 hospitalizations reach numbers not seen since last winter https://t.co/6FXlNihBl7
— Angama (@Angama_Market) October 19, 2023
ニュージーランドのタラナキ病院は、コロナウイルス長期障害を負う従業員自身のために内部病院を設置したという記事。看護師の一人は、車に乗るとどこに行くつもりだったのか忘れ、歩きながら失禁しそうになっている状態。感染時の症状は風邪よりも軽微だった。https://t.co/TZISsZkDDi
— Angama (@Angama_Market) October 19, 2023
感染時、というのは急性期、という意味だよね。後遺症の中には持続感染している人もいるようだし。←腸あたりだと、上気道周囲の検体では、検査しても検出できない可能性も高そう https://t.co/6SKDzaQipI
— چیفومی (@chifumi_k) October 19, 2023
まあそうですね。感染という定性的な定義自体が曖昧になってきています。
— Angama (@Angama_Market) October 20, 2023
コロナウイルスはORF6というアクセサリータンパク質を使い、宿主細胞が酸化ストレスに対応するのに必要な核因子赤血球2関連因子2(NRF2)を減少させ、さらに起動を阻害することで活性酸素を増加。さらにこれで抗ウイルス性IFN-βを抑制することが分かったという研究。https://t.co/sUYdJm26ub
— Angama (@Angama_Market) October 19, 2023
あーこれ老けこむやつだわ https://t.co/kSxmqz3FpF
— スーザン小林(サタン人民) (@SuzanneK23) October 20, 2023
こんなに効率よくヒトを老化させる仕組みだったのですね…
— スーザン小林(サタン人民) (@SuzanneK23) October 20, 2023
◆Dysregulation of intracellular redox homeostasis by the SARS-CoV-2 ORF6 protein【Virology Journal 2023年10月18日】
Abstract
SARS-CoV-2 has evolved several strategies to overcome host cell defenses by inducing cell injury to favour its replication. Many viruses have been reported to modulate the intracellular redox balance, affecting the Nuclear factor erythroid 2-Related Factor 2 (NRF2) signaling pathway. Although antioxidant modulation by SARS-CoV-2 infection has already been described, the viral factors involved in modulating the NRF2 pathway are still elusive. Given the antagonistic activity of ORF6 on several cellular pathways, we investigated the role of the viral protein towards NRF2-mediated antioxidant response. The ectopic expression of the wt-ORF6 protein negatively impacts redox cell homeostasis, leading to an increase in ROS production, along with a decrease in NRF2 protein and its downstream controlled genes. Moreover, when investigating the Δ61 mutant, previously described as an inactive nucleopore proteins binding mutant, we prove that the oxidative stress induced by ORF6 is substantially related to its C-terminal domain, speculating that ORF6 mechanism of action is associated with the inhibition of nuclear mRNA export processes. In addition, activation by phosphorylation of the serine residue at position 40 of NRF2 is increased in the cytoplasm of wt-ORF6-expressing cells, supporting the presence of an altered redox state, although NRF2 nuclear translocation is hindered by the viral protein to fully antagonize the cell response. Furthermore, wt-ORF6 leads to phosphorylation of a stress-activated serine/threonine protein kinase, p38 MAPK, suggesting a role of the viral protein in regulating p38 activation. These findings strengthen the important role of oxidative stress in the pathogenesis of SARS-CoV-2 and identify ORF6 as an important viral accessory protein hypothetically involved in modulating the antioxidant response during viral infection.